
www.eficode.com

eficode quick guide

TEST AUTOMATION
ROBOT FRAMEWORK

content

www.eficode.com02

Test automation

eficode quick guide

SIVUT: 03 - 10 SIVUT: 11 - 18

Robot Framework

eficode quick guide

03

TEST AUTOMATION

End repetitive work, do
things only once.

eficode quick guide

in a nutshell

www.eficode.com04

TEST AUTOMATION
Test automation is not just a cost-cutter.

Test automation helps driving development more

effectively, react to customer requirements better and

release changes for customers much faster.

www.eficode.fi

Test automation is

an inseparable part of modern

software engineering.

test automation05

te
s

t
a

u
to

m
a

ti
o

n

06

TEST AUTOMATION

est automation is best demonstrated with a practical example. Consider
an average software project with roughly 500 test cases to be executed
on the browser. If each test case takes five minutes on average to

execute, testing the entire software just once takes a single tester the equivalent
of about one week in working hours. If the cost of the tester, a hired external
consultant, is added to this, a single test execution costs approximately 2 000
euros. When we take into account that tests are done using the three most
common browsers, each with its own test execution, the costs of a single, manual
test can easily climb to 6 000 euros.

In just a few years, test automation has become an
essential part of functional, customer-oriented product
development. In order to utilise organisations’ core
competence as effectively as possible, repetitive routine
tasks must be handed over to computers.

T

The information we have gathered from customer projects shows that the
automation of a single, normal browser-based test takes two hours at most,
so the automation of the test cases in the example would take roughly one
thousand hours in total. Even if the test automation expert would cost twice as
much as the tester, the automation costs would still be less than one hundred
thousand euros, or less than twenty full, manual test executions.

500 manual tests x 5 min = 42 hours of work

Test automation pays for itself back on average
in six months.

25

75

DURING THE PROJECT

IN THE LONG RUN

Test automation reduces

the cost of quality control more

than

EFICODE RESEARCH

07

te
s

t
a

u
to

m
a

ti
o

n

The repeated execution of automatic tests does not incur any additional costs in
practice. In an average software project, test automation therefore easily pays for
itself in less than six months. We have proved this in several of our automation
projects.

Test automation changes the organisation’s approach
Software testing has traditionally been seen as a phase in which the functionality of
the implemented software is ensured using documented test cases at the end of
development.

In order to create competitive, enjoyable products in addition to fulfilling the
original need, it is no longer enough that the functionality of services is ensured
immediately before their release. And in order to efficiently respond to error
messages and change requests from users, it is no longer enough that the
development proposals and change requests are consigned to the next biannual
release.

If all quality assurance is done manually during the most active development
phase, the software will usually have time to change significantly in the time used
for testing and, at best, the implemented and previously tested features may
have already been broken for several days. In modern software development,
information about the quality of the product must be received much faster so
that development measures can focus on producing a high-quality product more
effectively and reliably.

Product development must pay even more attention on the usability of a product
and user needs already before development begins and especially during the
active development phase. When used appropriately, test automation offers testers
better opportunities for exploratory testing where new, unidentified problems are
searched for while ensuring that the product is easy and agreeable to use.

Linking automatic tests with the requirements of the implemented system helps to
monitor the real-time progress of development more reliably also from a business
perspective.

Test automation enables an agile
organisation and real-time quality control
Test automation brings quality assurance to configuration and implementation.
When the requirements set for a product are linked to automatically executed
test cases, software implementation and the fulfilling of requirements can be
monitored in real time. If automatic tests are also written in natural language,
the entire development organisation may engage in open discussion with
the help of the requirements and the related automatic tests. This reduces
misunderstandings and helps to react to changes much faster.

Does maintaining tests incur costs?
Automatic test cases should be considered as part of the product and product
development. Once the test cases have been created, they must be maintained
in the same way as the product’s software code and its other dependencies.
When the product changes, the test cases related to the change must usually be
updated to correspond to the new functionality.
Whether making these changes incurs extra costs as compared to updating the
documentation of, for instance, manual test cases depends on the product under
development. If automatic test cases have been designed well and implemented
structurally correctly, the updates related to software changes must ideally
only be made in one place so that all the test cases using the new feature are
simultaneously updated. This is known as keyword-driven test writing and you
can read more about it on the other side of this guide.

How should test automation be initialised?
Naturally, the easiest and most cost-effective way to introduce test automation
is in a new product development project. However, this does not imply that test
automation will also bring cost savings in the quality control of products that have
already been implemented and are maintained.
When test automation is introduced to a new product development project, it
should be tied in with the entire product development cycle. Test cases should
be linked to requirements and written at the same time as the feature in question

08

te
s

t
a

u
to

m
a

ti
o

n

is implemented. This ensures that the test is ready roughly at the same time
or even before the new feature is complete and that it is implemented as was
originally intended.

New development projects
•	� Choose a test automation tool providing test results that can be understood

by all individuals involved in the project.
•	� Make sure that the test automation tool can be integrated with the

technologies used in implementation.
•	� Make sure that the tests can be integrated with the requirements of the

product. The fulfilment of requirements can consequently be monitored
using test results.

•	� Make sure that the individuals responsible for writing tests are comfortable
with the test automation tool in question.

Products in maintenance
•	� First, consider whether introduction of test automation is justified for the

product in question. How much does quality assurance currently cost and
how long life cycle does the product have left?

•	� Choose a test automation tool with which the product can be tested as
effortlessly as possible through interfaces or user interfaces that have
already been created.

•	� Try to determine the key functionalities of the product that should be tested
first. In addition to gaining the most benefit from automation, you can
simultaneously estimate the cost of initialising test automation in terms of the
entire product.

•	� Make sure that the individuals responsible for further development and
maintenance of the product are motivated to learn test automation and
maintain test cases as part of other maintenance and development. Test
automation will otherwise go to waste soon after its initialisation. ■

1. Automatic tests save time and money

Automatic testing is practically free and always faster than manual testing. Tests
that have been automated once can be executed practically as often as required
and in different environments, such as terminals and browser versions.

2. Test automation forms the basis of an agile organisation

Automatic test cases linked to requirements and written in natural language
provide a solid foundation for software development. When the entire
organisation can engage in open discussion surrounding the test cases, the
number of misunderstandings decreases and it is easier for development teams
to assume full responsibility for their implementation measures.

3. Automatic quality control describes the state of development in real time

Automatic tests can easily be combined with product requirements. When the
tests are executed after each change made in the software, the state of product
development can be monitored reliably in real time.

4. Human resources are put to better use

Once automated, the tests allow know-how to be allocated towards product
development, the planning of better test cases and the testing of the usability
and ergonomics of the implemented service, among other tasks.

5. Cooperation with suppliers becomes easier

Test automation covers a large share of the quality gates, which can easily
be used as a starting point for negotiations concerning software acquired
elsewhere. After this, it is not a matter opinion how well the agreed quality
gates and metrics are implemented, but energy can be focused on constructive
cooperation.

BENEFITS IN BUSINESS

09

te
s

t
a

u
to

m
a

ti
o

n

6. Different environments can be tested in one go

If tests have been automated appropriately, test cases can be executed against
various environments, such as different terminals and browser versions, in one go.
This guarantees that all of the environments used by customers behave similarly and
no unpleasant surprises arise with e.g. new browser versions.

7. Automation facilitates difficult, lengthy testing targets

Unlike humans, automation does not get tired of executing individual test cases that
last for hours or more. When a bug is found during testing, automation can dig under
the surface and directly diagnose the sub-layer of the software where the problem is
located. This also makes fixing the problem faster.

8. All quality reporting can be combined

There are more and more institutional and other reporting liabilities concerning
software. Instead of writing reports by hand, mechanisms can be developed in
automation systems to produce a report in the exact form that is required by the party
in question.

9. Reported bugs are no longer lost

Bugs found by the end user can be written down as automatic tests already before
they are fixed. This ensures that they are not accidentally lost or remain untested.

10. Further software development is made easier in the long run

The greatest disadvantage of large, long-term software is the unexpected effects
of a new functionality in parts where it is no longer known which business-related
decisions led to a particular functionality. Automation not only finds unexpected
bugs already during development, but also documents business-related decisions.
It is easy to see that a business-related decision is no longer valid and therefore the
software can be safely edited. ■

Start-up costs of
test automation are high.

Test automation should always
begin with the automation of
some of the most important
and clear test cases, so that it
is easier to estimate the cost of
automation and compare it to
current costs.

Our product cannot be
tested automatically, because
it is so complex.

We have not come across a
single environment in our project
history whose testing could not
be automated with the right
choice of tools.

A product is practically always
tested somewhere before it
is updated in the production
environment. If no other
options are available, test
automation may begin in this
environment.

It is difficult or even impossible
to set up an automatic test
environment.

Who controls product
development, the company or its
subcontractor? Subcontractors
are often ready to also develop
their own business, but test
automation should also be taken
into account when renewing
contracts in problem cases. ■

Automatic tests may not be
carried out on the product,
because product development
has been outsourced to a
subcontractor.

Test automation is often
neglected due to other urgent
matters. It is therefore important
to begin automation in an agile
way and, if your own product
development team is busy,
choose a suitable partner for the
project.

We have no time for
test automation at present.

CHALLENGE / SOLUTION

EFICODE’s TEST AUTOMATION PILOT

The easiest way to try out test automation is Eficode’s test

automation pilot. During the pilot, our experts survey the most

important test cases with you and use them to introduce test

automation for your product. Product development also involves

other approaches that comply with the devops-principles, such as

continuous integration, which can be used to monitor the results and

the development of test automation effectively in real time.

10

11

ROBOT FRAMEWORK

Leave the routine testing
for Robot.

eficode quick guide

in a nutshell

www.eficode.com12

ROBOT FRAMEWORK
The development of Robot Framework started

at Nokia Networks in 2005 and in ten years it became

the standard tool for organisations during

the development and testing phase.

www.eficode.com

Robot Framework provides

the easiest way to combine the software

to be tested with automatic tests written

in natural language.

robot framework13

r
o

b
o

t
f

r
a

m
e

w
o

r
k

14

ROBOT FRAMEWORK

est cases written with Robot Framework are based on reusable
keywords. Thus, when the functionality of the software changes, there is
no need to rewrite each test case, but it is enough that the keywords re-

lated to the changed parts of the software are updated to correspond to the new
functionality.

Although tests are usually written in English, Robot Framework does not limit the
choice of test language. Therefore, test cases may be written in e.g. Finnish, if
needed.

Hundreds of thousands of test cases have been written with Robot, and it is used
by thousands of organisations around the world. In addition, seven Finnish IT
companies have established a foundation around Robot Framework to gua-
rantee the development of the tool as an independent, free and open-source
software. ■

The strength of Robot Framework lies in the fact that
automatically executed test cases are written in a reusable and
intelligible form.

The tests are connected to the tested system using test libraries,
ensuring that test cases can always be written in the same way
regardless of the environment. Thus, the entire development
organisation can use the same tool for test automation and
writing uniform test cases.

T

WHY ROBOT FRAMEWORK?

EXAMPLE TEST

FLEXIBLE 	� Robot Framework can be adapted to test almost any software or
product. It is ideal for testing web, mobile and integrated software
and the related hardware.

	 �Tests written with Robot can be read by everyone as they can be
written in e.g. Finnish. Requirements can be seamlessly linked to
the tests.

FREE	 �As it is open-source software, using Robot Framework for testing
is free. Not only do you keep your costs in check, but you can also
bid farewell to vendor lock-ins.

POPULAR	� Many of the Fortune 500 companies, and thousands of smaller
ones, already use Robot Framework. ■

Making a wire transfer between bank accounts
 Log in to netbank
 From shortcut menu select New payment
 Insert recipients account FI4950009420028730
 Insert recipients name Testi Anna
 Insert message test payment
 Insert amount 100
 Click continue
 Insert correct pin code
 Accept payment
 Verify payment has been transferred correctly

The example test below displays making a wire transfer in an online bank.
The name of the test is given in the first row, and each indented row is one
keyword. The keyword is linked via the test library to a specific action, such
as entering data in the text field displayed on the browser screen or clicking a
button. Keywords may also be assigned variables with which test cases can be
executed using different combinations of test data.

NATURAL
LANGUAGE

r
o

b
o

t
f

r
a

m
e

w
o

r
k

15

Write test cases together and link them with requirements
When test cases are written together, all of the individuals involved in development
go through the requirements and functionalities of the implemented product
together. In this way, writing test cases provides a better mutual understanding of
what is being done.

Execute tests after each change
When tests are executed after each change, any bugs or faults will be detected
as early on as possible. Also, new functionalities are not accidentally added on
top of a broken product, which might, at worst, have to be taken down later. This
approach is known as continuous integration and it is one of the cornerstones of
the devops methods.

Execute tests also on development branches
In order to guarantee that the combining of new features implemented on different
development branches of a product into a single release would go as smoothly as
possible, it is important that test cases are also executed when changes are made
on development branches.

Execute parallel tests
Executing parallel tests expedites feedback and improves product architecture.
Dependencies are not formed between test cases when they are executed at the
same time and ideally against environments set up for testing.

Automatic test cases are part of the product
Written tests must be maintained similarly to software code. Naturally, the aim is to
have test cases that are as easy to maintain as possible, but if the functionality of
the tested system changes, test cases or keywords must also be changed.

Invest in good test data
At best, the test environment corresponds to the production environment so well
that the test cases executed against it can be used to release the latest version
for customers. An essential part of such testing is the test data used to test the
system. The data determines what information is visible in the product’s test
environment. ■

BEST PRACTICES

1. Automatic tests guarantee up-to-date documentation

When test cases are written in natural language, they describe the properties
of the implemented system in an intelligible form. At the same time, they
also guarantee that the product works as desired. Successfully executed
text cases therefore form an up-to-date picture of the functionalities of the
system.

2. Automatic tests are always executed in the same way

When tests are executed manually, there is always a risk that some of them
remain undone or the test results are unreliable due to a typing error made
by the tester. Automatic tests, on the other hand, guarantee that the product
functions always in the same way. If automatic tests guarantee the desired
functionality sufficiently, the resources freed up from manual testing can be
allocated to more productive work.

3. Bugs are discovered faster

Automatic tests are ideally executed after each change so that system
failures are detected almost immediately. When bugs are found in time,
development is more gratifying and the costs incurred by fixing bugs
decrease significantly.

4. Greater test coverage

When a test case has been automated, it is added to a regression test set, which
can be executed practically as often as required. Consequently, each automatic
test case increases the test set that ensures the functionality of the implemented
product.

5. Test automation makes development more secure

When automatic tests guarantee the functioning of the implemented product,
development achieves a whole new sense of security. The focus of development
can shift more freely to making sensible technical decisions instead of cautious
changes, because the development team can be certain that an automatic,
targeted error message will signal any failures. ■

TECHNICAL BENEFITS

ROBOT FRAMEWORK

*** Settings ***

Library		 Selenium2Library	timeout=15

Test Setup	 Open browser and go to homepage
Test Teardown	 Close Browser

*** Variables ***

${BROWSER}	 firefox
${HOMEPAGE}	http://www.google.fi

*** Test Cases ***

Finding a blog article on Robot Framework
 Search google for �Robot Framework Eficode
 Click search result �Automatic testing with Robot

Framework pt. I ... - Eficode
 Wait Until Page Contains �short video tutorial on the

power of the Robot Framework and
Selenium

*** Keywords ***

Open browser and go to homepage
 Open Browser ${HOMEPAGE}	 ${BROWSER}

Search google for
 [Arguments] ${search}
 Input Text 	 name=q 	 ${search}
 Click Button 	 name=btnG

Click search result
 [Arguments] ${link}
 Wait Until Page Contains 	 ${link}
 Click Link 	 ${link}

r
o

b
o

t
f

r
a

m
e

w
o

r
k

16

It is a generic application framework designed to be easily expandable and
created from the very beginning specifically for acceptance testing and its
automation. Robot expresses business requirements as test cases written in
natural language, and actual testing measures are carried out using libraries that
integrate different testing programmes and technologies together to make the
computer do what has traditionally been done manually by a tester. It is easy to
accept Robot Framework as the starting point and foundation on which to build full
test automation, whether the tested software is a simple mobile app or a customer
relationship management system consisting of multiple different programmes.

Write intelligible test cases

Test cases in Robot Framework can be written in natural language so that, if
necessary, the agent can even personally write what the tested software needs
to do. However, test cases are automated by software engineering so that the
tests serve as aids and stimulate essential discussion. Communication intensifies,
and it can be explicitly verified whether the functionality works as desired; all
you need to do is to execute a test case written in plain language and see what
happens.

Triumph for open-source software

During its over 10-year lifespan, Robot Framework has almost always been
an open-source product although its development was sponsored by Nokia
Networks for years. Due to its openness, there are already several free Robot
Framework libraries for the most common testing targets, such as websites,
interfaces, mobile apps and databases. Those who prefer open-source products
also avoid expensive vendor lock-ins as both experts and competitive training
services are more readily available. ■

ROBOT FRAMEWORK

Robot Framework is the most common answer given by Eficode
when discussing which tool to choose for the automation of
acceptance testing.

r
o

b
o

t
f

r
a

m
e

w
o

r
k

17

ROBOT
FRAMEWORK

CUCUMBER FITNESSE SELENIUM

Open-source software	

Core technology	

Technologies featuring “out-of-the-box”

Test cases are...

“Workflow” test cases

Data-driven test cases

Gherkin test cases

Reporting	

Expandable with what? (Programming languages)

Usable with the most common CI servers

Own specialised editor

Optional editor

01

02

03

04

05

06

07

08

09

10

11

12

	 Python	 Ruby	 Java	 Java

	 C#, Java 	 Java 	 C#, Python C#, Javascript,
Python, Ruby

...software code
in a file

Not available

C#, Javascript,
Python, Ruby ja Java

...a table on a
wiki page

HTML

All

...in a file in natural
language

Output in a
terminal programme

Ruby

...in a file in natural
language

HTML

Natural
language. All.

r
o

b
o

t
f

r
a

m
e

w
o

r
k

18

Eficode helps companies to

implement Robot Framework in their

own business. We organise Robot

introductions, training sessions and

longer test automation projects.

The core competence

concerning automatic product

testing is always passed on to our

customers so that long-term product

development would be as effective

as possible and that vendor lock-ins

threatening the core business would

not be formed.

EFICODE’S ROBOT FRAMEWORK SERVICES

LINKS

Robot Framework’s homepage:
robotframework.org

Robot Framework Screencast:
www.eficode.fi/blogi/maintainable-automatic-tests-for-your-web-application

Eficode’s Robot Framework Blogs:
www.eficode.fi/tag/robot-framework

HOW DO I GET STARTED?

1. Gather and define test cases

The most important thing is to first outline the test cases that already exist to
guarantee the functionality of a product and the additional test cases that are
required. Without an understanding of the testing needs, implementing test
automation is useless.

2. Automate a few test cases

When you begin with a few critical or easily executed test cases, you can
quickly observe the challenges that may arise during the implementation of test
automation.

3. Accept test automation as part of everyday life

In order to make the most of automatic tests, it is important that executing and
writing tests is accepted as part of everyday product development routines. This
ensures that test cases actually test that the product functions as desired and
that the product’s test coverage grows steadily.

4. Expand test automation to cover the entire product

Each automated test case reduces the repetitive work done in quality assurance
after each change or, at the latest, before the release of a new version. The more
thoroughly a product has been automatically tested, the more cost-effective its
further development and maintenance are. ■

contact

www.eficode.com19

Eficode Oy
Pohjoinen Rautatiekatu 25, 00100 Helsinki
Birger Jarlsgatan 18A, 2tr, 114 34 Stockholm

Åkerlundinkatu 11 A,33100 Tampere
Uplandsgade 56, 1 sal, 2300 København S.

Marcel- Breuer- Str. 15, 80807 München
De Entree 143, 1101 Amsterdam

TEST AUTOMATION
ROBOT FRAMEWORK

Marko Klemetti
CTO

marko.klemetti@eficode.com
044 522 5927

HEIKKI HÄMÄLÄINEN
Head of DevOps

heikki.hamalainen@eficode.com
+358 (0) 40 766 2610

KAJ JOKINIEMI

Vice President of DevOps
kai.jokiniemi@eficode.com

+358 (0) 40 592 6257

Tatu Kairi
Domo Arigato Mr. Roboto

tatu.kairi@eficode.com
040 533 9559

