
GUIDE

Developing 
embedded 
software with 
DevOps



Contents

Introduction 03

What are embedded systems? 04

Unique challenges with embedded software 06

Busting the myth of incompatibility 08 

Conclusion 18

  

www.eficode.com | 2



www.eficode.com | 3

Introduction

This ebook explains how to improve the 

development processes for embedded software 

by adopting basic DevOps practices. You will 

learn the major challenges to successful adoption 

and how they can be overcome with tooling and 

methodology. 



What are
embedded systems?

www.eficode.com | 4

What do we mean by embedded  
software systems and how do they  
relate to DevOps?

Defining our terminology



Is DevOps 
incompatible?
 
Software development in embedded 
systems is a unique process and 
there are good reasons for supposing 
that DevOps might not be the right 
approach. However, resistance to 
DevOps in the embedded world is often 
due to concerns about practice rather 
than theory. The benefits are well 
known, but adoption is slow because of 
perceived barriers around practicalities. 

But this is a misconception. As this 
ebook will show, there are many aspects 
of DevOps that can be incorporated 
into embedded development without 
difficulty. For example, embedded 
developers should be able to control 
what they build and how they build 
it. They should have proper version 
control and automated builds. And they 
should be able to build quality into 
their embedded system much earlier 
by testing more effectively. DevOps 
provides workable solutions to all of 

these issues and this ebook will explore 
each of them in turn. 
 
First, a few words on what is  
commonly understood by DevOps and 
embedded software.

What do we mean by 
“DevOps?”
DevOps is an approach to software 
that seeks to integrate the relationship 
between development (Dev) and IT 
operations (Ops). Its methods and 
practices evolved from the Agile 
movement in software that was 
kickstarted by publication of The Agile 
Manifesto in 2001. The term “DevOps” 
was coined by Patrick Debois in 
2009 and popularized by the first 
DevOpsDays conference in Ghent later 
that year.  

The aim of DevOps is to accelerate 
the software development life cycle 

and produce a continuous delivery of 
high quality software releases to the 
production environment.

What makes embedded 
software different?
Embedded software is used to control 
machines and devices, but there is 
more to it than domestic appliances. 
The modern world runs on embedded 
software: critical infrastructure, 
medical devices, nuclear energy, 
airplanes and cars are all controlled by 
it.  The challenge faced for embedded 
systems is that the customer is often 
very difficult to deliver to. 

The brief outline given here  
suggests friction and compatibility 
between DevOps and embedded 
software. How is it possible to make 
“early and continuous delivery of 
valuable software” to systems that  
are embedded?

www.eficode.com | 5



Unique 
challenges
with embedded 
software

www.eficode.com | 6

Embedded software development
poses a unique set of challenges for
DevOps practitioners

Identifying the barriers to successful implementation



www.eficode.com | 7

What is it about 
embedded software 
that makes its 
developers so 
reluctant to adopt 
DevOps? Let’s 
consider some of 
the big challenges. 

Testing
Automated testing is an essential 
feature of DevOps. The big challenge 
with testing for embedded software is 
the lack of access to production-like 
environments. How can continuous 
releases to production be made without 
rigorous QA? Is there a way to include 
the hardware in the testing loop? 

Deployment
The embedded world is frequently 
concerned with custom deployments. 
This is a potential danger because, 
unlike application software, the live 
environment is the physical world. 
Updating a car while it’s being driven, 
or a piece of medical equipment that’s 
being used to keep someone alive 
carries clear and obvious risks. Even if 
the device is available for updating, is 
it connected? If so, how is it connected, 
and how can a release be securely 
deployed to it? 

Safety
Testing embedded software is especially 
serious because it is used in systems 
that are safety critical. Stakeholders in 
embedded systems for aircraft, missile 
defence and healthcare, to take only a 
few examples, are understandably very 
apprehensive about the potential for 
any new release to result in failure. 

Are embedded and 
DevOps incompatible?
Embedded software development is 
concerned with safety issues, custom 
deployments, and limited access 
to production-like environments. 
By contrast, DevOps is a method 
of releasing software that’s agile, 
collaborative, and automated. This 
seeming incompatibility is the reason 
why DevOps has been frequently 
dismissed as a method for embedded. 
However, there are a lot of benefits to 
be had by beginning with the adoption 
of some basic practices. 



Busting the myth 
of incompatibility
DevOps is based on a set of core 
principles, tools and methods that can 
be implemented in any development 
lifecycle, including those for embedded 
software. The first thing to consider is 
versioning and traceability 

Adapting DevOps solutions  

for embedded projects

www.eficode.com | 8



www.eficode.com | 9

Source code versioning
Configuration management and 
versioning are prerequisites to 
automated builds, CI, and eventually 
DevOps. Versioning tells the developer 
everything about how the system 
works: what the dependencies are, 
what’s been built, and what’s been 
tested. This provides full traceability 
across the entire SDLC. Getting this 
right is an essential step to successfully 
implementing DevOps in an embedded 
pipeline. 

The first and most obvious place to 
start is with source code versioning, 
where the industry standard is Git. 
There are many different approaches to 
selecting a version control strategy, but 
for DevOps there are good reasons for 
keeping it simple. Taking this approach 
means you can avoid long-lived 
branches, complex merge situations, 
and manual error-prone work from 
consuming your time.

Binary artifact versioning
Looking beyond the source code, it 
is also wise to have a strategy for 
versioning binary artifacts. There are 
lots of different approaches to binary 
versioning, but Semantic Versioning is 
fairly standard across the industry. Here 
is an example:

First, there is the Artifact Name. In 
this case it is “myapplication”, but it 
could be something like “controller” 
or whatever type of hardware is being 
working on. 

The next three numbers document 
Major.Minor.Patch information. 
This tells developers everything they 
need to know about compatibility. A 
major bump tells them that 
backwards compatibility 
is broken and they should 
check that all their 
dependencies still work. A 

minor bump tells them there are new 
features, but backwards compatibility 
is still maintained. The patch simply 
records the number of bug fixes/
patches.  
 
Then there is the Prerelease Version. In 
this case it’s alpha, but it could be beta, 
RC1, etc. 

Everything after the plus sign is the 
build metadata. It’s advisable to make 
this as simple as possible. In this 
example the build number is (001) 
followed by the git short SHA (5114f85), 
so the developer can check out the 
source code for the binary any time it is 
required.

myapplication-1.0.0-alpha+001.sha.5114f85

Artifact Name



www.eficode.com | 10

#ifndef _VERSION_H_
#define  _VERSION_H_

#define  PRODUCT_NAME “demo_app”
#define  MAJOR_VERSION 1
#define  MAJOR_VERSON 0
#define  PATCH_VERSON 9
#define  PRE_RELEASE_VERSION “-SNAPSHOT”

#define  xstr(s) str(s)
#define  str (s) #s

#define VERSION_STRING xstr (MAJOR_VERSION) \
   “ . “ xstr(MINOR_VERSION) \
   “ . “ xstr(PATCH_VERSION) \ PRE_RELEASE_VERSION
#include “build.h”
#define BUILD_STRING VERSION_STRING \
  “+” xstr(BUILD_NUMBER)  \
  “.sha.” xstr(BUILD_SHA)

#define PRODUCT_STRING PRODUCT_NAME “-” BUILDING_STRING

version.h

#ifndef _BUILD_H_
#define  _BUILD_H_

#define  BUILD_NUMBER 0
#define  BUILD_SHA 0000000
#define  BUILD_JOB “DEVELOPER”

#endif

build.h

Contrast this approach to versioning 
with something like myapplication-v10. 
This tells a developer nothing about 
the dependencies. Semantic Versioning 
is a simple, straightforward naming 
convention that provides all the basic 
information about the artifacts.

Next, create a second file called 
version.h to contain the rest of the 
semantic information and metadata. 
The binaries can now report their own 
build, version, how many patches have 
been applied, and so on.

Now that versioning is under control, 
let’s turn attention to the build.



www.eficode.com | 11

Automate the build process
The first step is to take the build process 
out of the IDE and into a build script. 
Establishing the build process in living 
documentation means there will always 
be a single source of truth for how your 
software is built. Check the build script 
into version control along with the files 
and database needed to build it.

A build script is particularly important for 
embedded software because it gives us 

traceability and reproducibility. With this 
system, the environment for any build 
can be quickly reproduced with the same 
results. 

Now that the build process is out of the 
IDE and into a build script it is possible 
to automate the builds on a neutral 
build server. A centralized build server 

retrieves everything from version control 
and builds on a machine free from 
developer dependencies. Now it works on 
everyone’s laptop. 
 
The build server can act as a gatekeeper 
for a certain level of quality in our central 
repository. If changes can pass through 
“integration” and “build” the code is 
good enough to share with the rest of the 
team.

Commit changes by merging them in Git 
and then perform a build – for embedded 
a “build’ might mean something like 
compile, link, and run all the unit tests 
– and if the build is successful the code 
is ready to be shipped to the central 
repository. This is how to practice 
Continuous Integration.  
But why stop there? If the commit is 
good enough for version control, it might 

Toll-gate pass

Build

Commit

Intregration

Rejected

Continuous Integration



www.eficode.com | 12

be of sufficient quality for production. 
There’s no reason to hold back quality 
software, so run the commit through the 
Continuous Delivery pipeline to see if it’s 
ready for the live environment. 

For embedded systems the Continuous 
Delivery pipeline will contain elements 
like static analysis and functional tests. 
The code might also be deployed by 
flashing a device to see if it boots, or by 
introducing hardware to the loop. The key 
thing to remember is that the pipeline 
can be customized for any number of use 
cases and if the code fails at any of the 
predefined steps it means it isn’t release 
quality. However, if it passes, we can ship 
it straight to production.   

It’s important to recognize the need for 
separate CI and CD pipelines because 
“good enough to share with the team” 
and “good enough for production” are 
different definitions of “done”. Some 

qualification steps can take days to 
complete, so if the code has to pass 
through the entire Continuous Delivery 
pipeline just to get to version control it 
will slow the team down significantly. 

Conversely, while developers should 
be able to push commits to the central 
repository as often as possible, stricter 
criteria should be in place for deploying 
to the production environment. 

Continuous Delivery

Validate

Document

Functional
lost

Deploy

Analysis &
metrics

RejectedPipeline

Fail

Fail

Fail

Fail

Fail

Done



libs
gcc

mycompany/
my-cross-compil-
er:1.3-release

libs

gcc

linker

#Dockerfile FROM
busybox:1.26.2-glibe
ADD tools.tar.gz
RUN make all

Use the same tools everywhere, indevelopment, CI, and release. Defined 
as code and version controlled.

www.eficode.com | 13

Manage the binaries
The next step is to take these new 
processes and tools for versioning, 
version control and automated builds, 
and put them into a system to maintain 
control over how we build. Storing all of 
the binaries, tools, and dependencies in 
an artifact management system means 
they can be easily deposited and shared 
with the rest of the team. 

The artifact management system 
provides easy access to all of the 
build artifacts. This means that the CI 

server, test systems, and development 
environments can share exactly the 
same dependencies.  
 
Next, why not capture the entire build 
and test environments in Docker 
images, defined as code, and then build 
automatically? This can form the basis 
of binary reproducible builds and shared 
development environments.



www.eficode.com | 14

Configuration as code
Tools like Git, Jenkins, Docker, and 
Artifactory can be used in combination 
to maintain a full traceability ecosystem 
where everything needed for a build can 
be defined as code and stored in version 
control. Once this in place new build 
environments can be built on demand. 
This is particularly useful for embedded 
because it frequently involves complex 
builds, so to be able to reproduce them 
quickly and easily is a huge benefit. 

Automate the testing
The first step is to take the build 
process out of the IDE and into a build 
script. Establishing the build process in 
living documentation means there will 
always be a single source of truth for 
how your software is built. Check the 
build script into version control along 
with the files and database needed to 
build it. 

A build script is particularly important 
for embedded software because it gives 

us traceability and reproducibility. With 
this system, the environment for any 
build can be quickly reproduced with 
the same results.  
 
Now that the build process is out of 
the IDE and into a build script it is 
possible to automate the builds on a 
neutral build server. A centralized build 
server retrieves everything from version 
control and builds on a machine free 
from developer dependencies. Now it 
works on everyone’s laptop. 

The build server can act as a gatekeeper 
for a certain level of quality in our 
central repository. If changes can pass 
through “integration” and “build” the 
code is good enough to share with the 
rest of the team.



www.eficode.com | 15

Test Driven Development (TDD)
Quality Assurance for embedded tends to 
be a phased approach that only happens 
after changes have been made to the copy 
of the codebase. But what if the tests could 
be written before development? Starting 
with the tests means it’s possible to decide 
in advance what the code will need to do to 
meet the requirements. This approach is 
called Test Driven Development (TDD) and 
it specifies and validates what the code will 
do before the developers start writing it.  

Ordinarily, code is written and then tested. 
Then, when the tests fail, the development 
team has to go back to refactor the code. 
The basic concept behind TDD is to write 
and correct failing tests before developing 
anything new. Developers only need to 
write a small amount of code each time to 
pass. The tests function as the requirement 
conditions for the new code, so as soon as it 
passes it’s good to ship.

Introduce the hardware
Eventually, it will become necessary to 
bring hardware into the testing loop. 

Ideally, the embedded system should be 
connected to the actual system, but this is 
rarely possible for reasons of safety/access/
time/cost. In place of the real thing it is 
possible to introduce hardware-in-the-
loop (HIL) as a substitute. 

HIL provides something very close to 
a live environment by simulating the 
physical properties in the machine or 
system. It includes the complexity of the 
real hardware system under control in 
the testing loop by adding mathematical 
representations for all the relevant 
dynamical systems. HIL works by using 
electrical emulation of sensors and 
actuators as an interface between the plant 
simulation and the software under test. 

With HIL it’s possible to run all sorts 
of tests that would destroy the actual 
plant. That enables testers to know the 
limitations of the hardware in a controlled, 
safe environment. For this reason HIL 

is a great technique for building quality 
and safety into an embedded system. The 
simulation can be stress tested to limits 
way beyond what is physically required by 
the real plant. And being able to establish 
the safety and security of software earlier 
means it can be shipped much faster. 

Build quality In The feedback loop

Write a  
failing 

unit test

Make  
the test 

pass

Refactor



www.eficode.com | 16

Prioritize your testing
Prioritizing relevant tests is one 
way to save time and keep pace with 
development. Embedded developers 
might not want to waste time with UI 
testing, even if there is one. There is 
always an end-to-end system though, 
and system tests should be right at the 
top of the testing pyramid.

System tests
Feedback on high level tests is extremely 
valuable, so running full, end-to-
end system tests on the hardware is 
a clear priority. However, this comes 
with challenges that are unique to 
embedded. Controlling the power source, 
programming the devices, creating 
input stimulus, and sensing the results 
are all obstacles to a successful system 
test. Some of these problems, like input 
stimulus, will be context specific and can 
be tackled with HIL. But there are also 
tools that can help with generic problems 
like power control and sensing results.

 

Component tests
There will probably be lots of components 
and they should all be tested individually, 
ideally in their own pipeline. But, let’s say 
there is something like a big signal block 
in the system. Making sure that each 
filter and detector is working properly 
is essential, but why not create a whole 
test system around it to save time? Chain 
everything together and give it a real life 
input that can be detected at the end of 
the signal processing chain. 

Unit tests
Ideally, every line of code and every 
branch outcome in our software should 
be unit tested. Why are unit tests needed 
if there’s already a suite of successful 
system tests? If it works at macro level, 
why bother with the small stuff?

Unit

Component

System



www.eficode.com | 17

In Growing Object Oriented Software, 
Guided by Tests, Freeman and Pryce 
develop the idea of internal vs external 
quality. Internal quality is concerned 
with how quickly changes can be made, 
how safe it is to make them, and how 
ambitious developers can be without 
refactoring. Unit testing provides high 
internal quality. 

External quality is seen from the 
customer’s point of view. Does the 
software do what it is supposed to do? 
Does it satisfy our end user? This is why 
performing unit tests and systems tests 
is essential. The code should be quick and 
easy to change, but it also has to meet the 
expectations of customers. 

Use an analytics tool
Static Analysis is the best way to identify 
bugs and errors early in our SDLC. In 
embedded software this is important 
because once bugs are lodged in the 
system they are costly to mitigate. 

Runtime errors are obviously an 

important consideration for embedded 
software, so it’s important to run 
Dynamic Analysis too. This will alert the 
team to memory leaks, pointer arithmetic 
errors, and time dependencies as the 
software is running. 

There are lots of analytics tools to choose 
from, but in embedded software it’s wise 
to be conservative. Embedded systems 
tend to have long lifespans, so go with 
longstanding vendors and get the source 
code whenever possible.

Internal
quality

Scale

End-to-endIntegrationUnit

External
quality

A
m

ou
n

t 
of

 fe
ed

b
a

ck

Build quality In What kind of testing do I need?



Conclusion
There are good reasons for adopting
DevOps as an effective approach to
embedded. The key lies in mitigating 
risk through continuous improvement  

Overcoming the obstacles one by one 

www.eficode.com | 18



www.eficode.com | 19

Continuous improvement 

Embedded software development will 
always pose big challenges due to the 
nature of production environments. 
Custom deploys, safety issues, 
regulatory concerns, and lack of access 
to adequate testing environments 
means that the pipelines used for 
developing application software cannot 
be simply repurposed for embedded.  
 
At the same time, working in embedded 
does not provide justification for ad hoc 
versioning or building in the IDE. Those 
are aspects that can be improved upon 
without delay, and once they are under 
control it’s not a big leap to running a 
successful CI server. 

Testing will remain the biggest 
challenge in embedded, but there are 
solutions available there too. Test 
Driven Development enables developers 
to build quality and efficiency into the 
code from the first line. Adopting HIL 
means they can ship code in confidence, 

safe in the knowledge that it is safe. And 
by combining system and unit tests, 
high quality software can be achieved 
both internally and externally.  
 
In conclusion, the essential principles 
of DevOps are perfectly compatible with 
embedded systems with the right tools 
and the right approach. By starting with 
version control and working towards 
automated testing, it’s possible to 
continuously improve on an embedded 
software delivery pipeline without the 
need for large scale reorganization, or 
even risk. 

To learn more about DevOps for 
embedded systems contact us at  
www.eficode.com

https://www.eficode.com/


www.eficode.com | 20

Developing embedded  
software with DevOps
Author  

Michael Long is the Techninal Director at 
Eficode Praqma and has 10 years of experience 
in the oil and gas sector as a software engineer 
and project architect.

What is Eficode?

Eficode is driving the DevOps movement across 
seven countries with ideas that put customer 
value and team satisfaction on center stage. 
Eficode was doing DevOps before the term 
even existed by advising global brands on 
how to make software more effectively. Today, 
Eficode transforms companies with unmatched 
DevOps expertise and solutions like the Eficode 
ROOT DevOps Platform, a DevOps Toolchain 
as a service. Eficode’s community of more 
than 300 professionals is building the future of 
software development together.

If you want to know more, contact us
  
embedded@eficode.com

Finland  +358 207 40 11 22
Denmark   +45 31 68 98 75
Norway  +47 48 67 63 60
Sweden   +46 76 340 30 50
Germany  +49 172 4 15 16 17
The Netherlands  +31 20 280 41 18

You can f ind all our contact  
information here: 
www.ef icode.com/about/f ind-us



https://www.eficode.com/

	Button 5: 


